
JOURNAL OF COMPUTATIONAL PHYSICS 80, 362-373 (1989) 

Targetted Stochastic Matrix Inversion 

JOSEPH F. DREITLEIN AND GEORGE F. SOWERS 

Physics Department, University of Colorado, Boulder, Colorado 

Received October 9, 1987; revised February 29, 1988 

The solution of linear systems by stochastic techniques is investigated as an alternative 
to the widely used elimination and relaxation procedures. The Pan-Reif algorithm is used to 
allow any non-singular matrix to be stochastically inverted. New algorithms are devised 
to overcome some of the efficiency problems of the original Von Neumann-Ulam method 
and its refinements. The method is tested on some simple physical problems to gauge its 
effectiveness. 10 1989 Academic Press, Inc. 

1. INTRODUCTION 

There are innumerable physical problems whose solutions await a fast and 
accurate method of large matrix inversion. For example, the computation of 
Green’s functions on a latticized space or spacetime can be formulated as a matrix 
inversion problem. The requisite algorithms are still in a state of active development 
for both serial and parallel computer architecture [l J. 

In this paper, we develop further an alternative [2] to the widely used elimina- 
tion and relaxation methods [3] for the solution of linear equations, such solutions 
being equivalent to matrix inversion processes. After outlining the general idea 
behind stochastic matrix inversion in Section 2, we show in Section 3 how the Pan- 
Reif algorithm can be used to condition any non-singular matrix for stochastic 
matrix inversion. 

Two algorithms, to which Sections 4 ‘and 5 are respectively dedicated, improve 
substantially the efficiency of computing a targetted inverse matrix element. 
(Targeted matrix inversion processes [4] compute a prescribed inverse matrix 
element, all that is needed in many computations of physical interest.) It should be 
noted that both algorithms are well suited to parallel processing. The algorithms 
are particularly suitable for sparse matrix inversion because in such cases the 
possible paths used in the inversion are severely restricted in number and are par- 
ticularly easy to count and generate. An analysis of the random error involved in 
the computation shows that the error is typical of a stochastic process and goes as 
l/,,& The analysis leading to this result is essentially the same as that reported in 
Ref. [S]. 

The algorithms are tested on simple lattice problems which require targetted 
inverse matrix elements. Techniques, such as lookup table preparation, which 

362 
0021-9991/89 $3.00 
Copyright 0 1989 by Academic Press, Inc 
All rights of reproduction in any form reserved 



STOCHASTIC MATRIX INVERSION 363 

increase the computational speed are mentionned and the results of calculations are 
reported in Section 6. Section 7 gives our conclusions about the efficiency and 
promise of stochastic matrix inversion. 

2. STOCHASTIC MATRIX INVERSION 

Stochastic matrix inversion, suggested many years ago by Von Neumann and 
Ulam [5], involves finding a procedure for estimating the value of KL in order to 
compute an approximant for the Neumann series for M-i = (1 - K)-‘. If the norm 
of K is less than one, the series converges. The next section shows how any inver- 
sion problem can be reduced to evaluating a convergent Neumann series. 

We recapitulate here the salient points of the stochastic procedure. The matrix 
element (KL),,,, n(Lj involves SL- ’ terms of L products each, where S x S is the 
dimension of the matrix. Each term can be uniquely specified by picking a sequence 
of nodes {n} - (n(O), n(l), . . . . n(L)} which is encountered in the product 
K K n(O),n(l) n(lLn(2)‘” K n(L- 1). n(L). A typical term in the sum will contribute a value, 
say V, to the matrix element (KL)n~o~,n~L~. 

In many of the inversion problems encountered in physics, the matrix is sparse 
and so many of the paths of nodes will lead to a vanishing term in the sum for 
WL) n(O), n(L). Only needed are paths with nonvanishing I/. For example, if the 
matrix elements of Kj, j are zero except when j = i f 1 with i, j taken modulo S then 
there are at most only 2L-1 non-zero valued paths encountered in evaluating KL. 
Assume this case for the sake of discussion. Furthermore, let a particular one of the 
2L-1 paths be selected with probability P by a procedure which takes into account 
the importance of the path (such a procedure will be detailed below). Then if a 
given path is stochastically selected, its contribution to the desired matrix element 
should be recorded by letting a random variable W assume the value (called the 
weight from now on) 

w= VIP (2.1) 

if this particular path is selected. It follows that the expectation value of W is V, 
since in N tries it will be selected Nx P times on the average. If the typical impor- 
tant paths are selected, one might hope that a relatively few paths will give a good 
estimate ( W) for V. This is the essence of stochastic matrix inversion to which a 
few more details must no be added to make the method practical. 

One procedure for implementing the stochastic matrix inversion process goes as 
follows. Take a random walk starting from the node n(0). The first step leads to 
node n( 1) with some selected probability pnco), n(,j. Since the probability of winding 
up somewhere is one, the sum of probabilities of stepping to some node is one. If 
the value of the K matrix element between the two nodes is Vn~O~,n~l~ then the 
weight associated with this step is taken as Vn~O~,n~l~/P,,~o~, noJ - Wn~O~,~~l~. Continu- 
ing in this fashion, the contribution from the second step has the weight Wntlj,ncZl 
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formed from Vn(l),n(2) and Pn(l),n(2). After L steps, the value used in the estimates 
for the matrix element KL to be recorded when this particular path is encountered 
is the product W(L) of L terms of the weights computed in the walk: 

Since the path is chosen with probability 

(2.2) 

(2.3) 

the expectation value of W(L) is the desired matrix element. A random walk of 
length L can be used to calculate the estimator not only for KL but also the 
estimators for K-’ with J between 0 and L. One merely uses Eq. (2.2) with L 
replaced by .Z and takes the product of .Z terms. If, as the random walk proceeds, 
the products are computed cumulatively and then summed, an estimator for the 
Neumann series which is truncated at term KL results. 

The procedure described calculates an estimator for (M-‘)nCOr,nCLj. While the 
value of n(0) can be selected as the starting point of the nodal walk, the value of 
n(L) is only determined stochastically. If a particular inverse matrix element is 
desired, the procedure becomes computational inefficient especially when L ti 1 and 
the matrices are sparse since the probability of hitting a particular final node n(L) 
is small. What is needed is a procedure for procedure for targeting the random 
nodal walks at a prescribed final value n(L). Sections 4 and 5 give two algorithms 
to accomplish the targetting efficiently. But first we show stochastic procedures can 
be applied to the inversion of any non-singular matrix. 

3. PREPARATION OF MATRICES FOR STOCHASTIC MATRIX INVERSION 

All procedures for stochastic matrix inversion use a Neumann series expansion to 
compute the inverse of a matrix: M- ’ = (I- K) -’ = Z+ K+ K2 + . . . . The series 
will converge only if the matrix norm of K is less than unity. 

If the norm of K is greater than one, the problem can be recast into a form which 
does involve a convergent Neumann series. The recasting of the problem requires 
an approximate inverse of M which shall be called W. Define the remainder matrix 
by 

R(W)=Z-(WXM) (3.1) 

arranged to have a norm IR( W)( < 1. Then 

M-‘=(WxM)-‘W=(l-R(W)))‘W (3.2) 

and (I- R( W)) -’ can be expanded in a convergent series expansion. 
It is always possible to find such a suitable W, as pointed out by Pan and Reif 
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[6] and others [7]. An approximate inverse with the desired properties of 
boundedness is given in terms of the Hermitian conjugate Mt by 

w= AM+, 

1 (3.3) I 
‘= (max,x, IM,I) x (maxjCi IM,I)’ 

The proof of this somewhat surprising construction of an approximate inverse is 
given in Pan and Reif. With this choice of W, the remainder matrix becomes 

R( E”M+) = I - Gkf’M (3.4) 

and requires one matrix multiplication to compute. 
If M is sparse, then W is also sparse. This fact enables the procedures described 

in this paper to be extended to the stochastic calculation of 

C(z-R(W))~lWjk (3.5) 

in one of two alternative ways. The targetted values (I- R(W)),’ may be com- 
puted for the small number of indices for which W, is non-vanishing for a given k 
and then multiplied by these matrix elements which are then summed for the small 
number of terms. Alternatively, the matrix elements of RP x W for a sequence of p 
values may be computed directly by an obvious modification of the procedure to 
be prescribed for calculating the matrix elements RP. 

4. TARGETTED STOCHASTIC MATRIX INVERSION-ALGORITHM A 

To avoid elaborate and possibly confusing notation and yet still present the basic 
idea of targetted stochastic matrix inversion, consider an S x S matrix with all 
elements vanishing except when i= j+ 1 with all indices reduced modulo S. The 
random walk on nodes used to determine the estimator for the Neumann series 
consists of steps which move from node n(k) to either node n(k + 1) or node 
n(k - 1). Again, to illustrate the ideas in a simple way, all sequences of nodes are 
selected with equal probability. 

Suppose now that the random walk starts at a prescribed node n(0) and ends 
at a predetermined node n(L). Such walks cannot be determined by randomly 
stepping sequentially since such a procedure would not, in general, lead to the 
target node n(L). Instead one can move a distance D= (n(L)-n(0)) from the 
starting node in L steps by moving E positive steps and 0 negative steps with the 
constraints 

L=E+O, 

D=E-0. 
(4.1) 
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In general, there are many nodal walks which are of length L and proceed a 
distance D from the origin node. If there is at least one such walk, then there will 
be a total of F such walks where 

(4.2) 

It will always be true that both L + D and L-D are even if a walk can land on 
the prescribed site after L steps. It is not difficult to find an algorithm (Appendix A) 
to take the E steps and the 0 steps in a random sequence and so to generate an 
unbiased targetted walk. The issue to resolve is how to obtain the weight W which 
such a path will contribute to the Neumann series estimator. 

First consider the construction of an estimator for KL. The particular sequence 
of nodes generated by the random walk leads to a product of matrix elements 
which will be called V just as in the last section. The probability of taking this 
particular path is l/F. It is easy to see then that the random variable whose mean 
value is the estimator for the matrix KL should receive a contribution of value 

VxF, (4.3) 

where V is determined by the particular path selected. The expected value ( W) 
obtained by averaging the values of W over an ensemble of selected nodal paths 
will just be ML. This procedure was described and tested in a previous work 
Ref. [4]. It represents an improvement over the method described in the last sec- 
tion if specific inverse matrix elements are needed rather than the entire inverse 
matrix. The increase in efhciency is very like the efficiency gained by using the 
relaxation rather than the elimination method for inversion of matrices which solve 
linear equations. However, it would be much more efficient if each path of nodes 
selected would generate an estimator for the whole Neumann series rather than just 
for one term. Such a method will now be presented. 

Suppose in the process of walking randomly from n(0) to n(L), the goal displace- 
ment D is also realized on the Jth step. Then the estimator for KJ is to receive a 
contribution which depends upon the path value V and a factor C= P-‘. The path 
value V is obtained by multiplying the product of matrix elements determined by 
the sequence of nodes visited by the random walk just as described in Section 2. 
The computation of the weight W= VC to be recorded for this “hit” contributing 
to w%co), n(L) requires the value of the factor C obtained by combinatorial 
considerations. Recall that the number of paths which take a displacement D in L 
steps is 

(4.4) 

If a path hits the targeted displacement D after J steps, then in the remaining L - J 
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steps the path must again wander to the target node n(L). The number of paths of 
length L -J which move from node n(L) to node n(L) is 

N(L-J,O)= (4.5) 

Therefore the probability of taking a path of length L which moves to target D in 
J steps and completes the journey in any way consistent with winding up with 
displacement D is 

p=N(L-J,O) 
NW, D) 

and so the weight of the path is 

V Vx L!(((1/2)(L-J))!)’ 
w=P=(L-J)!((1/2)(L+D))!((1/2)(L-D))! 

(4.6) 

(4.7) 

and should be recorded as an estimator for (KJ)n~o~,n~L~. 
By keeping a record of the weights accumulated everytime a targetted walk lands 

on the target node, an estimator for the Neumann series rather than just a single 
term of the series is produced. The targetting of the path for L steps enhances the 
chance of hitting the target at J-c L steps since the path is restrained from diffusing 
too far from the target. The efftciency of targetting for a long path is thus partially 
shared by smaller length paths which hit the target. 

5. TARGETTED STOCHASTIC MATRIX INVERSION-METHOD B 

An alternative method for targetted matrix inversion will now be presented. The 
main differences from the previously discussed procedure are the way of generating 
the paths and the concomitant changes in the method of computing estimators. 

The method will be presented for a walk in two dimensions with unit steps 
chosen randomly in one of the four directions to nearest neighbors. To compute a 
path of length L which hits a target at a displacement D = (DX, DY) from the 
origin, take the probability of making one of the four alternative steps to be 

p(k) = NV - 1, D’(k)) 
WLD) ’ 

Here k = 1,2, 3,4 according to whether the step is in the +x, -x, +y, or -y 
direction, respectively. The quantity N(L, D) is the number of paths of length L 
suffering a displacement D = (DX, D Y) and D’(k) is given by 
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D’(1) = (DX- 1, DY), 

D'(2) = (Dx+ 1, DY), 

0'(3)=(DX,DY- l), 

0'(4)=(DX,DY+ 1); 

D(k) is the displacement to the target after the step of type k has been taken. Sub- 
sequent steps are also chosen in accord with Eq. (5.1) but with L replaced by the 
number of steps remaining to be taken, D replaced by the current displacement to 
the goal, and D' replaced by the new displacement to the goal after the pending 
step is taken. The quantities N(L, D) can readily be computed, in some cases 
analytically (for an example, consult Appendix B). 

The algorithm for path generation given by Eq. (5.1) selects all possible paths in 
an unbiased way. Indeed the probability of traversing the sequence of nodes 
NO = (X0, Y,), N, = (Xi, Y,), . . . . N, = (X,, Y,) is clearly 

PWO + NL) = 
N(L - 1,Dl) x NL - 2,&l Nl> D,-1) 

ML, D) W- l,D,) ' "' 'N(Z,D,,)' (5.3) 

where Di is the residual displacement to be made after i steps. The probability of 
the path being taken is l/N(L, D), since N(l, D,- ,) = 1. 

At each step, if the target is hit, the “hit” table is updated by incrementing the 
counter tallying the number of times that the node is hit on the Jth step and adding 
the product of the matrix elements encountered in the walk to this node to a value 
table. After many walks are generated, the estimate for the value of K-' is obtain by 
looking up the number of times (H) the target was hit on the Jth step, the sum of 
the values of the matrix elements recorded (V) and the quantity N(J, D). The 
stochastic estimator for KJ is then (V/H) N(J, D). 

If the walk should hit the point of origin, then the subsequent walk from the 
origin to the target also has information about the values of the matrix element 
desired. To use this information, one must open a register to accumulate the 
products of matrix elements encountered in the subsequent walk beginning at the 
revisited origin. 

It remains to be shown that the stochastic matrix inversion method can be easily 
implemented in software and is competitive in efficiency and perhaps superior to 
other methods of large sparse matrix inversion. The next section gives an example 
of the use of this algorithm to solve a simple lattice problem. 

6. EXAMPLES 

The two algorithms for stochastic matrix inversion have been tested on simple 
problems-the computation of some internodal resistances of one- and two-dimen- 
sional networks of equal resistances. A formulation and solution of such problems 
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TABLE I 

Computed results for D = 1 Network Using Algorithm A 

Sample size - 2 -1 0 1 2 

2000 3.16 1.98 0 1.85 3.18 
2000 3.16 1.94 0 1.82 3.19 
2000 3.12 1.86 0 1.75 3.12 

Exact 4.00 2.00 0 2.00 4.00 

TABLE II 

Computed Results for D = 2 Network Using Algorithm A 

Sample size 

300 
300 
300 

Exact 

(090) (131) (29 2) (3,3) (4*4) 

0.00 0.59 0.83 0.90 0.97 
0.00 0.63 0.82 0.91 0.95 
0.00 0.62 0.83 0.91 0.98 

0.00 0.64 0.85 0.98 1.07 

TABLE III 

Computed Results for D = 2 Network Using Algorithm B (50 Walks) 

Steps per walk 1 2 3 

6 0.598 0.718 0.742 
10 0.611 0.756 0.800 
16 0.619 0.795 0.848 
20 0.622 0.795 0.867 
24 0.625 0.803 0.882 

Exact 0.637 0.849 0.976 

TABLE IV 

Number of Estimates for (K’),, 

Length 2 4 6 8 10 12 14 16 18 20 22 24 

6 30 27 50 
10 46 36 27 30 50 
16 53 33 18 23 18 22 31 50 
20 51 30 33 19 16 19 26 20 28 50 
24 59 33 30 27 19 23 15 18 16 16 29 50 
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by (untargetted) stochastic matrix inversion has already been given [S]. The basic 
computational problem is the inversion of the admittance matrix. The examination 
of this type of problem as a test for the algorithms was motivated by the similarity 
of the features of the matrix with those encountered in quantum field fermion 
simulations. 

The algorithms were encoded in the C language and run on a microcomputer 
since the matrices to be inverted were effectively small. The code using algorithm A 
creates a lookup table for the weights given by Eq. (4.7) first for a one-dimensional 
network of resistances (D = 1). For the D = 2 case, considered next, the lookup 
table for the weights is computed from the formula 

W(J)= (U4)"'x NL D,, D,J) 
N(L-J,O,O) ' (6.1) 

where N(L, D,, D ,,) is given by Eq. (B.4) L is the number of steps in the walk and 
J is the step on which the target is hit. A small number of paths were selected in 
the unbiased manner described in Appendix A. The results are reported in Tables I 
and II. Table I gives the values of resistances found for a D = 1 linear network of 
1 R resistances. The comparison of pairs of values which ideally are equal (at nodes 
which are symmetrically placed with respect to node 0) gives some idea of the 
random error incurred. The deviation computed from the exact results also includes 
systematic errors such as truncation of the Neumann series. Table II summarizes 
the results for a two-dimensional homogeneous resistive network of 1 Q resistances. 
Only 500 paths were selected out of ~5.49 x 1O226 different paths for the 50 step 
walk for the target D, = 0, D Y = 0. The results are accurate to within a few percent. 

The same problem of a D = 2 resistive network was attacked using Algorithm B. 
Fifty walks were taken in each case and L, the number of steps, was varied from 
6 to 24. The results are presented in Table III. In addition, Tables IV and V have 
been compiled to show the number of estimates obtained for KJ for 50 walks. It 
should be noted just how efftcient Algorithm B is in obtaining hits for estimates 
of KJ. 

Since the numbers computed in all these examples depend on the difference of 
two large numbers, the errors tend to amplify especially in the D = 1 case. The 

TABLE V 

Number of Estimates for (K’)O, 3 

Length 2 4 6 8 10 12 14 16 18 20 22 24 

6 50 
10 I 20 50 
16 3 7 11 19 24 50 
20 1 6 4 9 9 9 18 50 
24 3 6 5 10 9 13 10 18 26 50 
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examples in this sense bring out sharply the errors in the methods. Even in such 
unfavorable circumstances, the estimates obtained are quite acceptable for many 
purposes. 

7. CONCLUSIONS 

The method of large matrix inversion by stochastic estimates has been developed 
to the stage which we believe is maximally efficient. For problems requiring specific 
inverse matrix elements of very large matrices to an accuracy of a few percent, the 
method presented should be considered as an alternative, probably superior, to the 
non-stochastic methods of inversion. We are currently applying the stochastic 
matrix inversion algorithms to a problem in quantum field theory involving inter- 
acting bosons and fermions. 

APPENDIX A-UNBIASED SELECTION OF PATHS 

Suppose that a random walk on a two-dimensional square lattice is taken with 
L steps result in a displacement D = (DX, DY). Haltering steps, those which loop 
back to the same node, are allowed in this example. The constraints on the number 
of positive steps in the X direction (XR), the number of negative steps in the X 
direction (XL), the number of steps in the positive Y direction (YU), the number 
of steps in the negative Y direction (YD), and the number of haltering steps (H) are 

L=XR+XL+YU+YD+H 

DX=XR-XL (A.11 
DY=YU-YD. 

The number of different paths of length L which undergo a displacement D is given 
by the multinomial coefficient 

ML, D) = c 
L! 

XR!XL! YU! YD!H!' (A.21 

where the sum is over all nonnegative values of XR, XL, YU, YD, and H which 
obey the constraints of Eq. (A.1). 

Suppose that XL and YD are also specified. The number of paths with the 
specifications L, DX, DY, XL, and YD is given by 

L! 
(DX+XL)!XL!(DY+YD)! YD!(L-DX-DY-2XL-2YD)! (A.3) 
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TABLE VI 

Probability of a Path with a Specified (XL, YD) 

Probability 

(090) l/61 
(0, 1) 12161 
(1,O) 12161 
(Ll) 2416 1 
(0,2) 6161 
(23 0) 6161 

These numbers may be looked upon as the relative probability for the targetted 
path having the characterizing values (XL, YO). The possible values of (XL, YD) 
with non-vanishing probability are those for which the arguments of the factorials 
in the denominator of Eq. (A.3) are non-negative. One must choose the value of 
(XL, YD) according to their relative probabilities. 

For example, if L = 4 and D = (0, 0), there are 61 different possible paths. 
Table VI gives the probability of a path with a specified (XL, YD). In this example, 
it is of interest to note that there are 13, 25, 13, and 61 paths returning to the origin 
after one, two, three, and four steps, respectively. The number of untargetted walks 
with L=4 is 625. 

Once (XL, YD) is chosen, the five values XR, XL, YU, YD, and H are fully deter- 
mined by (XL, YD) along with L and (DX, DY). The walk can now be generated 
sequentially in an unbiased fashion using a generalization of Algorithm S found 
in Knuth [9]. Let z, (i= 1, 2, 3, 4, 5) take on the values xr, xl, yu, yd, and h 
and be the number of steps of each type remaining after L - 1 steps, where 
I = xr + xl + yu + yd+ h is the remaining number of steps. Then the probability of 
taking a step of type i is 

pi=T. (A.4) 

If the kind of step is determined sequentially by these probabilities then an unbiased 
targetted walk will be generated. 

APPENDIX B-COUNTING THE NUMBER OF PATHS 

The number of paths of length L which exhibit a displacement D = (DX, DY) for 
a two-dimensional walk can be given by a closed analytic expression. A generating 
function for counting paths is 

(@I +e-ih +e42+e-id2)L=C N(L, D)p.+, 
(B.1) 
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where C$ = ($1, &). Hence 

The evaluation of the integral is easy if new variables are introduced: 

4=i(#1-42) 

@ = i(G4 + 42). 

The result of the integration is 

U3.2) 

(J3.3) 

L!2/(;(L-DX-DY))! (+(L+Dx+DY))! 

g5(L-Dx+DY))! (;(L+Dx-DY))! 
(B.4) 

if the target can be reached by taking L steps. Otherwise, N(L, D) is zero. 
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